- · 《智库时代》栏目设置[06/28]
- · 《智库时代》收稿方向[06/28]
- · 《智库时代》投稿方式[06/28]
- · 《智库时代》征稿要求[06/28]
- · 《智库时代》刊物宗旨[06/28]
SDBD2020顺利召开算力智库携手全球大咖解读智能数
作者:网站采编关键词:
摘要:ACM SIGKDD2020是一年一度全球最顶级、最高水平、最具影响力的数据科学盛会,本次SDBD国际研讨会作为KDD大会中聚焦智能数据和区块链等新兴技术的专场Workshop,由新加坡管理大学及算力
ACM SIGKDD2020是一年一度全球最顶级、最高水平、最具影响力的数据科学盛会,本次SDBD国际研讨会作为KDD大会中聚焦智能数据和区块链等新兴技术的专场Workshop,由新加坡管理大学及算力智库共同举办。
会上,来自全球的学界与产业界专家从数据作为资产的维度探讨了前沿科技赋能数据共享的最新实践,并倡导“技术+制度”双轨并行充分挖掘数据要素的更大价值。
1
数据治理是数字经济前提
人工智能、区块链等科技让数据成为了智慧数据,但所谓数据经济则不止于智慧数据。新加坡管理大学教授朱飞达认为,在谈论科技如何让数据变得“可计算”之前,还必须认识到一个前提——数据是资产,数据需要治理。
然而即便是这样一个大前提,人类也花费了很长时间才认识到。朱飞达教授表示,数据经济历经了三个阶段。第一阶段数据只是商业活动的副产品,人们更多用数据来理解过去。第二阶段是大数据与数据经济的兴起,在这一阶段数据被少部分企业垄断而得利。第三阶段则是数据驱动经济,数据成为了驱动所有机构组织的共享资产。
翼方健数 CEO罗震认为,从信息时代到智能时代,数据正在更多被机器和计算程序使用,也让机器更加智能化。作为信息时代的遗留物,数据具有独特的经济学特征,如虚拟可再利用、固定成本高、可变成本低,同时也在隐私、合规、机密、安全性等非经济学维度显示出鲜明特征。
事实上,人们在认识这些数据特性的过程中已经付出了代价,缺乏治理的数据泄露案例造成巨大损失。
新加坡国立大学副教授何丙胜表示,数据泄露已非孤立事件,各行业都有相关事件。在教育、医药、能源、健康等领域,每一起数据泄露事件造成的平均损失都至少在500万美元以上。
这些负面案例不仅承载了巨大的经济损失,更消耗了整个社会对数据共享的意愿和信心,让本就基础薄弱的数据共享愈加困难。
罗震指出,数据本质上不能被安全共享,但应该在不共享数据本身的前提下实现数据价值共享。
当然这就更难,最著名的阻碍就是数据孤岛。何丙胜教授以医院数据为例表示,不同的医院有不同的病人,但其实病例有许多相似性。医院、银行、电商,他们各自的数据实际上是分别掌握了相同人群的不同方面。
朱飞达教授的研究发现,数据生态系统中存在两大瓶颈。第一大瓶颈存在于个人、企业、政府等不同角色间。第二大瓶颈存在于数据、模型和应用间。
在个人与企业间,用户作为数据的贡献者不仅被排除在价值分配之外,对自身数据的认知与控制也十分有限,更要承受隐私泄露风险。个人与政府间则存在隐私与数据泄露的担忧。政府部门间因制度原因存在“数据高墙”,企业之间数据孤岛现象普遍,在企业与政府间数据共享缺乏激励。
另外,在数据端,数据来源不明,质量差;在模型端,模型的设计与训练难以获取真实用户数据;在应用端,缺少先进的模型造成了低层次的数据智能。
朱飞达教授认为,问题的根源并不在于数据智能本身,而在于数据治理。数据资产治理的核心要素是信任+激励。其中,信任可以通过联邦学习、差分隐私、安全多方计算、TEE等来实现,而激励则通过数据定价、数据挖掘、机器学习、通证经济等来实现。
2
数据共享:技术与制度两条腿走路
各界专家达成的普遍共识是,数据安全流动与共享需要在技术与制度两大层面上齐头并进。
在科技层面可以看到,各类前沿科技正百花齐放,以隐私安全计算为整体解决方案赋能数据安全共享。
罗震把当下热门的隐私安全计算技术分为三大路径:多方安全计算MPC/同态加密、联邦学习、安全沙箱计算/TEE。他进一步总结了这三大路径的区别——依次随信任假设的增加,计算复杂性就降低。另外,隐私安全计算技术还涉及到差分隐私、云计算、区块链、对抗神经网络等技术。
微众银行首席人工智能官、香港科技大学计算机与工程系讲座教授杨强则以羊群吃草为例解释了联邦学习。传统方式是将草从各地集中到一起喂羊,但这并不合规,隐私和数据安全保护的要求使得获取数据成为障碍。而联邦学习则提供了新思路:让羊群在各地移动,而草不出本地,主人无法知道它吃了哪些草。
同盾科技合伙人兼人工智能研究院院长李晓林介绍了同盾科技的知识联邦,其利用一套层次化框架体系统一支持各种安全多方应用,通过数据安全交换协议,有效利用多个参与方的数据,进行知识共创、共享和推理,实现数据可用不可见。
文章来源:《智库时代》 网址: http://www.zksdbjb.cn/zonghexinwen/2020/0910/575.html